A Brief Overview of Results from the 1st LHC Heavy Ion Run

Brian A. Cole
Columbia University

Material liberally drawn from QM 2011 talks by: Steinberg, Wyslouch, Velkovska, Jia, Snellings, Krajczar, Loizides, Truzpek, Lee, Appelhauser, Heinz, BAC

LHC Heavy Ion Pre-history (1 year ago)

From BAC ICHEP 2010 Plenary Talk

Pb+Pb (Canonical) Time History

- Three questions for which first Pb+Pb run at LHC will provide insight
 - What physics drives the initial entropy production?
 - Will quark gluon plasma at the LHC remain strongly coupled, do we understand collectivity at RHIC?
 - What is the physics responsible for Jet quenching?

+ much more

RHIC Particle Multiplicities

Multiplicity per colliding nucleon pair

- Multiplicity @ RHIC on low end of predicted range, slow growth with N_{part}
 - Suppression of expected hard contribution
 - ⇒"Saturation" via gluon recombination?
 - ⇒Test by going to LHC where saturation effects are expected to be stronger.

Charged Particle Multiplicity

- Weak variation of dN_{chg}/dη with centrality
 - Consistent results between ALICE, ATLAS, CMS
- Same centrality variation @ RHIC and LHC
 - ⇒(Naturally) consistent with saturation?

Charged Particle Multiplicity (2)

 Above 10 GeV, mid-rapidity dN_{chg}/dη varies as a power law in s_{NN} for both central, min-bias

 \Rightarrow ALICE: power = 0.15

 \Rightarrow CMS: power = 0.13

Charged Particle Multiplicity (3)

- Generically, saturation models too flat in more central collisions (300 < N_{part} < 400)
 - ⇒Except for Albacete et al
- Soft + hard a la HIJING 2.0 can also describe the N_{part} dependence of dN_{chg}/dη

Collective Motion: Elliptic Flow

 Pressure converts spatial anisotropy to momentum anisotropy.

Collectivity: Elliptic Flow

- Logarithmic variation of v₂ with √s above 10 GeV
 - Change from RHIC to LHC is comparable to change from SPS to RHIC
 - ⇒But, beware, integral v₂ can be misleading.
 - ⇒Though it may be most directly related to η/s

Collectivity: Elliptic Flow (2)

- Identical results for v₂(p_T) @ RHIC & LHC
- Except for peripheral
 ⇒Likely EP vs cumulant
- How?
 - Same initial eccentricity + same collectivity?
- Or
 - Accident?

Collectivity: Elliptic Flow (3)

- Weak variation of v_2 with η for $p_T > 500$ MeV
 - In contrast to RHIC results.
 - ⇒Saturation of v₂ due to longer lifetime @ LHC?

Collectivity: Elliptic Flow (4)

Luzum and Romatschke, Phys. Rev. Lett. 103:262302, 2009

Prediction:

For same η/s, little increase in v₂/ε from RHIC to LHC
 Data show > x2 increase in v₂/ε.

• BUT

- Depends on ε_{part} from Glauber -- may not be correct
- Beware systematics on v2 (e.g. v2{2} vs v2{4})

Collectivity: Elliptic Flow (5)

- Viscous hydro + hadronic cascade (VISHNU)
 - Compare to RHIC and LHC dN_{chg}/dη, v₂(p_T), v₂(cent)
 - Using CGC initial conditions (KLN)
- Possibly higher η/s @ LHC
 - But, caveats re: initialization of $\pi^{\mu\nu}$
- Important to remember that longer lifetime of sQGP @ LHC should have consequences for v₂

Higher Flow Harmonics

- Major paradigm shift in the field in the last year
 - Higher flow harmonics arising from initial-state fluctuations in transverse positions of participants

$$\frac{dN}{d\phi dp_T d\eta} = \frac{dN}{2\pi dp_T d\eta} \left(1 + \sum_{m} 2v_m \cos\left[m(\phi - \psi_m)\right]\right)$$

Significant results up to n = 6

Higher Flow Harmonics (2)

- Elliptic (v_2) flow dominates except in central collisions where $\varepsilon_2 = 0$ without fluctuations
 - v₃ has much weaker centrality dependence
 - ⇒ consistent with participant fluctuations

Higher Flow Harmonics (3)

- Combination of v₂ and v₃ provide more stringent tests of hydrodynamic calculations
- · Heinz et al:

⇒Should allow resolution of Glauber vs CGC IC

Higher Flow Harmonics (4)

- Already have results for v₃(p_T) for different particle species
 - Even more stringent tests of hydrodynamics
 - Including (non)contributions from hadronic cascade?

Higher Flow Harmonics (5)

- Higher harmonics also studied using 2-particle correlations at large $\Delta\eta$
 - Sum of harmonic contributions sufficient to explain the "ridge" and the "mach(?) peaks"
 - ⇒Resolves two important "problems" in the field

Jet Quenching

Key question:

- -How do parton showers in hot medium (quark gluon plasma) differ from those in vacuum?
- 1st jet results from the LHC:
 - Insight on differential quenching
 - ⇒Next: probe "inclusive" quenching

Jet Quenching: Inclusive Observables

Vitev, Wicks, Zhang, JHEP 0811 (2008) 093

Armesto, Salgado, *et al*, JHEP 0802 (2008) 048

Key questions:

- ⇒(How much) Is the jet yield suppressed?
- ⇒ How does suppression depend on jet radius?
- ⇒Is the fragmentation function D(z) modified?
- ⇒Is the hadron angular distribution broadened?

Jet Suppression via Rcp

R = 0.4

Use 60-80% centrality as peripheral reference for R_{cp}

$$R{
m cp} = rac{rac{1}{N_{
m coll}^{
m cent}}rac{1}{N_{
m evt}^{
m cent}}rac{dN_{
m jet}^{
m cent}}{dE_{
m T}}}{rac{1}{N_{
m coll}^{60-80}}rac{1}{N_{
m evt}^{60-80}}rac{dN_{
m jet}^{60-80}}{dE_{
m T}}}$$

Observe:

⇒Factor of ≈ 2 suppression of jet yield/N_{coll} in central (0-10%) collisions relative to 60-80% collisions.

Jet Suppression via Rcp (2)

R = 0.2

R = 0.4

Observe

- ⇒Suppression E_T independent within errors
- \Rightarrow Same for R = 0.2 and R = 0.4 within errors

Jet Fragmentation

 No apparent modifications of (longitudinal) jet fragmentation function.

Jet Fragmentation (Transverse)

- Measure distribution of fragment p $_T$ normal to jet axis: $j_T \equiv p_T^{
 m had} \sin \Delta R = p_T^{
 m had} \sin \left(\sqrt{\Delta \eta^2 + \Delta \phi^2}\right)$
 - Compare central (0-10%) to peripheral (60-80%)
 - ⇒No substantial broadening observed.

Di-jet asymmetry - ATLAS PRL

$$A_{
m J}\equivrac{E_{T\,1}-E_{T\,2}}{E_{T\,2}+E_{T\,1}}$$

- "Holy grail" of jet quenching
 - But, due to quenching or underlying event?

Di-jet asymmetry (2)

 Similar results from CMS with very different experimental systematics

Di-jet Asymmetry, R = 0.2

- Strong modification of di-jet asymmetry in R = 0.2 jets (1/4 area of R = 0.4)
 - ⇒ Asymmetry not due to underlying event

Charged Particle Suppression

- Strong variation of RAA with pt
 - Long sought indications of radiative energy loss?

Charged Particle Suppression (2)

• CMS (and ATLAS) obtain similar results

⇒R_{AA} ~ 0.4 at high p_T in central collisions

Charged Particle Suppression (3)

- CMS and ALICE results consistent at high pt
 - But, both require extrapolation of p-p in √s or p_T
- CMS result naively compatible with ATLAS jet suppression (0.5, flat in E_T).

⇒Does physics change for p_T > 30-40 GeV?

Summary & Comments/Questions

- LHC multiplicity (and E_T) results provide key data on LHC initial conditions
 - ⇒But insight on the physics?
- Physics of bulk particle production also determines initial state geometry & fluctuations
 - ⇒Possibility for v_n to constrain theoretical descriptions of the initial conditions
 - ⇒But, do we have the correct physical picture?
- Will RHIC d+Au, LHC p+Pb be sufficient?
 - ⇒ My opinion: new ideas and /or e+A needed.

Summary & Comments/Questions (2)

- Collective flow physics qualitatively similar at RHIC and the LHC
 - But, longer lifetime of sQGP at LHC results in less sensitivity to hadronic stage.
- For both RHIC, LHC v_n physics will revolutionize study of collective flow
 - ⇒ Precision determination of transport coefficients?
 - ⇒Subject to initial condition uncertainties.

Summary & Comments/Questions (3)

Energy Density or pressure

- Lattice thermodynamics from hotQCD group
 - ⇒QCD trace anomaly (ε-3p)/T⁴
 - ⇒an "interaction measure"

Summary & Comments/Questions (3)

Energy Density or pressure

Trans $(\tau = 1 fm)$ Tland $(\tau = 1 fm)$

 Will we be able to "see" the effects of the higher temperature initial conditions using flow measurements at the LHC?

Summary & Comments/Questions (4)

Rapid progress on high-p_T, jet physics program

20-40%40-80%

p_ (GeV/c)

- Possible physical picture emerging
 - Energy lost by jets appears at large angles wrt jet axis
 ⇒But, we are just at the beginning. Stay tuned.